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Quadratic gravity:
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Renormalizeable QFT for quantum gravity
- the most conservative version of quantum gravity

BUT:
R ~ 0%¢g R? ~ 0%¢0%¢

Higher derivative theories have “issues” and mythology

Bottom line: Find unitary theory, appears stable near Minkowski
- but with Planck scale causality violation/uncertainty



Caution: not all approaches need be equivalent

Usual way we teach/discuss theories:
1) Classical physics and solutions
2) Canonical Hamiltonian quantization of free field theory
3) Add interactions
4) Repeat with Lagrangian Path Integrals

Here — reverse pathway:
1) Start with Lorentzian Lagrangian Path Integral
2) Include interactions with matter (also leading self interactions)
3) Then, analyze gravitational sector
4) Limits to standard EFT at low energy (and classical physics)

Reverse pathway 1s like the approach to Electroweak theory

Our understanding of the equivalence 1s based on standard theories



Why this path?

Spectrum becomes clear at first step
- only stable state 1s massless graviton

No need for canonical quantization of unstable ghost

Only stable states appear 1n unitarity sum
- no ghosts, only their decay products

Low energy limit is usual gravitational EFT
- with usual stability properties



Also Lorentzian vs Euclidean

This equivalence is not a sacred principle
- changes 1n causality/spectrum
- especially problematic for gravity !

This path starts with Lorentzian PI

Note: Anselmi takes different path — starting from Euclidean
- perhaps the paths will merge someday
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The graviton propagator gets modified by g* terms, roughly

iD(q) = — _ = — — — :
(4) > —q*/M?  ¢*> ¢*>— M?

Spin zero portion leads to either a tachyon or a normal resonance
- depends on sign of f7

Spin two portion leads to either a tachyon or an unstable ghost
- depends on sign of &2

Choose signs to avoid tachyons (i.e no poles at spacelike momenta)

Need to focus on spin-two propagator and find spectrum



The spin-two propagator (including self-energy)
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(General structure:

iD(q) = : ~ with Im (q) = ~(q) v(q) > 0
q® + i€ — T + E(q)

Massless pole 1s usual graviton
The high mass pole carries two minus sign differences:

iDp(q) = 1

2 q
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Interpretation:
This 1s different from normal resonance
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Here we have
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This 1s time-reversed version of a resonance propagator
- time reversal is anti-unitary

Still corresponds to decaying particle

Important for unitarity — imaginary parts are the same
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Propagator — time orderings

iDr(2) = DE"(2)0(t) + DF(2)9(~1)

Note energy flow, and also decay lifetime

3 —i(wgt—G-F) i Eqt—F-1) .
Der(t. 7) _/ d q o~ Hwqt—q-Z - q qz. . zgq |
) (27?)3 2;&(] [E + !_) O

x -E,-i ¢

Dbad{(f ?] :/ qu [T-i(u’qt—@"f’) B f'-'_i(qu—g"f) (,f%:ql
' (2m)3 2w, 2(Eq + i)




Merlin modes:
-Merlin (the wizard in the tales of King Arthur) ages backwards

“Now ordinary people are born forwards in Time, if you understand what
I mean, and nearly everything in the world goes forward too. (...) But I
unfortunately was born at the wrong end of time, and I have to liwe backwards
from in front, while surrounded by a lot of people living forwards from behind.”

T. H. White Once and Future King |

Note, there 1s a key distinction with usual nomenclature “ghosts”
- ghost is anything with a minus sign in the numerator
- these Merlin modes refer to crucial sign —iy in denominator in addition



Unitarity of unstable particles:

(FITi) = (FITT[i) = i ) (FITT(5)(ITi)
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Who counts in unitarity relation?
UNITARITY AND CAUSALITY IN A RENORMALIZABLE
- Veltman 1963 FIELD THEORY WITH UNSTABLE PARTICLES
M. VELTMAN *)
- only stable particles count
- they form asymptotic Hilbert space
- do not make any cuts on unstable resonances

This looks funny from free-field quantization
- interaction removes states from the Hilbert space

Also, we know some states are almost stable

- can treat them as essentially stable
- Narrow Width Approximation (NWA)

But of course, Veltman 1s correct



Formal proof of unitarity with unstable ghosts

With G. Menezes arXiv:1908.02416 in PRD _
Follows Veltman: ;k O _
- circling rules O“ T
- largest time equation %

- turns into derivation of cutting rules %
Only difference 1s energy flow
—iG*(r—2") = O(zpg—25)G (x —2') + O(—x¢ + 25)G 7 (x — 1)
—iG*(xr—2") = O(zp— = )C (r—2") +O(—2¢ + )C (x — x)
—iGty(r — ') = O(zo — 2)Géy(x —2') + O(—xz0 + 16)56 (x —2")

Important point - all steps in Minkoswki space
- no analytic continuation employed

Formalizes early work by Lee-Wick

(i(xk - Xj)
G*(Xk - ‘(l)
G+(Xk - Xi)

Gi(.’(k - Xi)



Causality

Known since Lee-Wick and Coleman that such propagators
lead to micro-causality violation

Traced to backwards-in-time propagation of Merlin
- dueling arrows of causality

But limited to time scales proportional to lifetime

For gravity this 1s inverse Planck scale



Lee, Wick

Coleman

Grinstein, O’Connell, Wise
Alvarez, Da Roid, Schat, Szynkman

Phenomenology

Vertex displacements: (ADSS)
- look for final state emergence N4 .
- before beam collision /) N 5 ATV
Form wavepackets — early arrival (LW, GOW)
- wavepacket description of scattering process
- some components arrive at detector early

Resonance Wigner time delay reversal

- normal resonaces counterclockwise on Argand diagram
B o

- Merlin modes are clockwise resonance

For gravity, all are Planck scale
- no conflict with experiment



Stabilit . See also Salvio;
Y Reis, Chapiro, Shapiro

Consider propagator with retarded BC:

log (— [(go + i€)* — §°]) = log (—¢* — ieqo) = log|q*| — im6(q*) (8(q0) — 6(—q0)) x guie x Equie

Again propagation in both directions:
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Backwards perturbations have finite lifetime:

t ) o0
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No growing modes — no sign of Ostrogradsky instability
-logically this is likely related to unitarity



End of initial overview:

Identifying spectrum early 1s key step
- decay removes ghost from asymptotic spectrum

Factors of i are crucial
- two changes of 7 in propagator



More on causality

Causality 1s not really cause before effect”
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Decompose into time orderings: e
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Positive energies propagate forward in time
- backwards propagation 1s “negative energy”

But backward-in-time propagation shielded by uncertainty principle
At ~ 1/AE



Operators commute for spacelike separation

O(x),0(2")] =0 for (z—2")*<0

T~

Note: metric 1s

PHYSICAL REVIEW VOLUME 95, NUMBER 6 SEPTEMBER 15, 1954

Use of Causality Conditions in Quantum Theory

M. GELL-MANN, Institute of Nuclear Studies and Department of Physics, University of Chicago, Chicago, Illinois
M. L. GOLDBERGER,* Princelon University, Princeton, New Jersey

AND

W. E. THIRRING,T Institute for Advanced Study, Princeton, New Jersey
(Received May 24, 1954)

The limitations on scattering amplitudes imposed by causality requirements are deduced from the
demand that the commutator of field operators vanish if the operators are taken at points with space-like
separations. The problems of the scattering of spin-zero particles by a force center and the scattering of
photons by a quantized matter field are discussed. The causality requirements lead in a natural way to the
well-known dispersion relation of Kramers and Kronig. A new sum rule for the nuclear photoeffect is

derived and the scattering of photons by nucleons is discussed.

This requires negative energy part of propagator to accomplish



But also — Arrow of Causality

What determines past lightcone and future lightcone?
- and why do all particles share this?

This comes from the ie

iDrp(q) =

Determines that positive energy propagates
forward 1n time




What if we used e instead of eS?

Consider generating functions:
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Need to make this better defined — add

e € f d'lx;b-z;’ﬁ

Solved by completing the square:

Z4|J| = Z[0]exp {% / d*xd*yJ(x) iDyp(x — y).f(y)}

Yield propagator with specific analyticity structure

CdYtq | +i
iDip(le—y) = e~ (r=y) ,
1 (2= Y) / (27)4 q> —m? L ie




Result is time-reversed propagator

iD_p(x) = DL (2)0(t) + D8 (2)6(—1)

“Positive energy” propagates backwards in time

Bq o
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Use of this generating functional yields time reversed
scattering processes

Opposite arrow of causality




Time reversal is anti-unitary

Lagrangian can be invariant, but PI 1s not

Z.[J] — Z_|J]

Note: Also can be found 1n canonical quantization
Changes

(b(t, z), m(t,2")] = .-5553(:1:. e
to N

(o(t, x), 7(t,2")] = —iho> (x — 2')  with 7= 500




“Arrow of time”:

Typical motivation:

"The laws of physics at the fundamental level don t
distinguish between the past and the future.”

But this is not correct

The laws of quantum physics have an arrow of causality
Buried in the factors of 1 in the quantization procedures
Our time convention uses Z,

- 1f reverse time convention used, use Z_

Note: Arrow of thermodynamics follows arrow of causality



Dueling arrows of causality

Quartic propagators have opposing arrows

Who wins?
-massive state decays
-stable states win



Living with Causality Uncertainty

Wavepackets are an 1dealization:
-really formed by previous interactions

Likewise beam construction from previous scattering
- and measurement due to final scattering

The timing of scattering will become uncertain

e
o
'-\._'_.--'

But causal uncertainty is likely a general Look for
property of quantum gravity upcoming
paper



Unitarity: Cutkosky cutting rules

Obtain discontinuity by replacing propagator with:

t 2 P, Pl Y L 4
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E-—mitie (" —m")#(q0) NVVERNVY

Also on far side of cut, use:

; —1
—
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Example — self energy

2@ (N +1) [ d'k ,
Dises B(g) = 5 }/[2“) 2m3(k)(ko) 276 ((q — k)2)0((q — k)o)

Can repackage this:

Discy ¥X(q) = 2qT'2(q)

The discontinuity is equivalent to the decay width at g?



Cuts in a resonance propagator:
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Bubble sum on each side of propagator:
- will c.c. propagators on the far side

Disc D(q) = D(q) 2qT'2(q) D"(¢q) = —2 Im[D(q)]

This 1s true no matter 1f normal resonance or Merlin modes
- imaginary parts are the same



Three particle cut = resonance + stable cut

. . . d*ky  d*ks 1 (N +1)&%(q — k1)?
Discs $(q) = x°¢" / - —— —
3 S @Mt @m) (g - ky)? - g 2
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Identify matrix element

Mz = h’-t}zfi{@ = k1)?D(q — k1) o .
and play similar games, to get expected unitarity relation

Discs ¥(q) = 2qI's(q)

Again result is independent of type of resonance

Bottom line: discontinuities come from cuts on stable particles



Narrow width approximation
Discontinuity in propagator was due to on-shell states only

2q1'(q)
(g2 —m2)2 + (m,I'(q))?

Disc D(q) = D(q) 2qT'(q) D*(q) =

But when I 1s small, this 1s highly peaked on the resonance,
Use:
1 €

O(x) = lim — -
( ) e—0 7 12 - €2

Limits to usual cutting rule:

lim Disc D(q) = 276(q* — m3)

'—0

In “three particle cut”, this 1s equiv. decay to resonance plus stable

Again, this result 1s independent of normal or Merlin resonance



Lessons ala Veltman

Physics:
Cuts for resonances actually are through the stable particles

Resonances do not go on-shell

Math:
The iy quickly overwhelms the ie

In the end, this 1s what Veltman 1963 shows

Think: LSZ

(b|Sa) = [ / dizy e (O + mf}] [ / d'ze T (O, +m?) [ (QT{6(21) - b(20)}|)



Heuristic proof of unitarity

Unitarity works with stable particle as external states

Cuts through stable particle loops same for normal and Merlin resonances
Both normal states and Merlin resonances can be in same propagator
Veltman proved normal resonances satisfy unitarity to all orders

The Merlins will then also satisfy unitarity



Narrow Width Approximation with Merlin modes

This path follows M. Schwartz: QFT +SM

d*k i —1
M= —
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Normal

Convert Dy to advanced propagator

i
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Wi
Product of advanced propagators vanishes

Play some games and pick out Im part
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Ghost

: k0

Take same path
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But delta functions cannot be
satisfied
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Lee-Wick contour

kO

Contour goes around poles
Returns to normal discontmuity as y goes to zero

Compatible with usual Wick rotation

Treating ghost like a normal particle requires LW contour



More needed:

Stability at higher curvatures/energies
- closer to high mass pole
- if unstable there, 1s 1t benign? (like Starobinsky inflation)

More detailed explicit calculations
- Gabriel has one not yet published
- higher order loops

Connection to unitarity-based calculations
-unitarity techniques with unstable particles

Lattice simulations?
- but Euclidean vs. Lorentzian

Etc...



Summary:

Quadratic gravity 1s a renormalizeable quantum field theory

Positive features:
- massless graviton identified through pole in propagator
- ghost resonance decays — does not appear in spectrum
- seems stable under perturbations
- unitarity with only stable asymptotic states
- LW contour as shortcut via narrow width approximation

Most unusual feature:
- causality violation/uncertainty near Planck scale

More work needed, but appears as a viable option for quantum gravity



Addendum:

The following slides were not presented in the talk. I wrote

them following the discussions at the workshop, in order to

be more explicit about some of the issues which concerned

some of the other participants. Some of this are comments which
I would have presented with extra time, and some 1s in response
to the discussions.

I thank particularly Richard Woodard and Bob Holdom for
discussions which sharpened the issues.



This 1s a very simple toy model which I hope illustrates where the “is-
sues’ of quadratic gravity lie, and how Gabriel and I think of quadratic
eravity. It was not presented in my talk, but is relevant for the 1ssues which
dominated the discussion afterwards. I am tacking it on to the end of slides
for the talk in the hopes that it is useful for those folks who revisit the slides
after the conference 1s over.

This starts with the Lagrangian for a higher derivative field ¢ coupled
to a normal light field v

| | I 1 . |
L(o) = §@ﬁgﬁ@“g?b REYYVE Oe0é — goy? . (1)
Let us use the path integral

to study the theory:.



Let me now manipulate this a bit. I introduce an auxiliary field 7 which
when vou integrate it out reproduces the same Lagrangian. This is

| | 1 |
L(d,n) = 5‘)‘&@6’“@ —nlo + §i”l-1'2-?;2 — gd\* . (3)

As a next step we can define a new field by ¢ = h — 7 replacing the field ¢
by this combination. The Lagrangian then becomes

1. .
Llh.n) = |50uh"h = ghy®

Lo oy Lo o000 )

9 p:]'( Ui 2*' 1 grnx ( )

So we have transformed the original theory exactly to

Z = f[dh}eifd4$[%3nh3“h—ghx2}
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The remnant of the original higher derivative term is the —¢ istead of 47 in
the second path integral.

What to make of this feature? The second path integral is an acceptable
path integral on its own right. It is just the complex conjugate of the usual
path mtegral for a massive particle. Our interpretation of it is as a time-
reversed version of the standard path integral. because the Lagrangian itself
1s T mvariant, and T 1s anti-unitary. This 1s the only place where 7 enters
the theory when using PI quantization. so the result is just standard QFT
with all factors of 7 going to —i. If you were doing canonical quantization
vou would also want to change the signs of 7, that is using commutators with
—ih mstead of 7h, which is just the Lee-Wick indefinite metric quantization
(also similar to Salvio-Strumia. Philip Mannheim’s is a bit different.). That
form of quantization is designed to also produce positive energy for the free
particle states of this particle. But in the end the result in both schemes is
that it takes large timelike values of ¢* to excite the field at ¢*> = M?. It
takes twice as much to produce two. It takes vet more to produce two plus a
normal particle. This 1s just like the energy budget of normal particles. This
1s what 1s meant by the ghost being a positive energy particle.



In this simple case, it is easy to integrate out the ghost because it is
Gaussian. You do this and the result 1s a factor of

o) dtzdtyzox*(z) iD_p(z—y) 0x*(v) (6)

The notation D_p was defined in the talk but is just the complex conjugate
of the usual propagator. In the low energy limit, this is just an additive term
2
4
X (7
2M?2 )

This is a shift in the coupling A\y* in the v Lagrangian. It is suppressed by
1/M? and so cannot overwhelm the original coupling for large M. Further
terms coming from the derivative expansion of the propagator are further
suppressed by more powers of 1/M?. This is Applequist-Carrazonne at work.
and 1s the construction of the low energy effective Lagrangian. The low

AL(\) =

energy effective Lagrangian just contains h and y, and is a normal field
theory. Since h 1s massless. it will have a normal classical theory.



This construction has avoided Ostragradsky. The keyv step that does
so 1s the quantization step (either PI or canonical) that tells us that the
cghost 1s massive with positive energy. That lets us integrate out the massive
field. The Ostrogradsky assignment of P’s and Q’s does not correspond to
the quantum construction.

The toy model has features which tell us where to look for problems in
both the toy model and in quadratic gravity. The problems are not negative
energies, nor Ostrogradsky, nor the classical limit. However, there can still be
problems. because you have this heavy particle quantized with the opposite
sign of 7 coupled to normal particles with the usual sign of i. This gets excited
at high energy by the scattering of two y field. That these carry positive
energy to produce this resonance confirms the positive energy interpretation
of n. However there is also the minus sign in the propagator near the massive
pole. That is where the problem lies, not in negative energies nor in the
classical limit. It becomes the “dueling arrows of causality” issue which
Gabriel and I focussed on. At this stage the reader should go back and follow
the development from the section titled "Spectrum”. We there discuss the
cases with high energy quantum behavior. The main result is the violation
of micro-causality which comes from the differing factors of 7.



[ am also attaching to the talk three slides which I cut at the last minute
because I felt (correctly) that I would not have time to present them. These
are an explicit example of how unitarity is satisfied when scattering through
the ghost-like pole. The factors of 7 work out just right to make the amplitude
unitary. These slides were originally i the talk immediately following the
slide “Heuristic proof of unitarity”, and are in the same notation as the earlier
slides on the spectrum of the theory.

If yvou have comments about this addendum, I would be happy to hear
them.



Unitarity in the spin two channel

Do these features cause trouble in scattering?
- consider scattering in spin 2 channel

First consider single scalar at low energy:

iM = (éﬂy(q}) [iD#F ()] (éﬁta(—q})

M =167 (2] + 1)T;(s)Ps(cos)
J=0

Results in

Neggs - _-"\.TC_H =1/6 for a single scalar field

TQ(_S} = —

_ 1 R2s k28N g s ik2sN g
D ls) = =<{1- - =1 :
(5) { 2€2(;) 64072 n(,u,?)—'_ 640 }



Satisfies elastic unitarity:

ImT, = |Ty|°

This implies the structure

o — Al A)f(s) +1A(s)]
L) =50 2A0 i) + A2s)

for any real f(s)

Negs

Signs and magnitudes work out for  4() = ~gor

Multi-particle problem:
- just diagonalize the J=2 channel
- same result but with general N



Scattering amplitude at weak coupling:
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