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Famous Penrose and Hawking theorems on

singularities inside black holes imply that

the General Relativity does not give consistent

description of the spacetime in the BH interior.

Stationary BH solutions 
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For black holes this is not sufficient: main

   problem is fast growing anisotropy ( .
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(i) Modified fundamental gravity (higher 

     derivatives, ( ) theory, etc.);

(ii) Nonlocal modification (Ghost-free gravity);

(iii) Gravity as an emergent phenomenon 

 

        Modified gravity: Options

f R

      (strings, loops, etc.): Classical ST terminates

       its existence. New phase.
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(i) There exists a fundamental  length scale ;

(ii) In the domain where  the metric obeys 

     the Einstein 

   

equations with small corrections;

Pll

Phenomenological approach
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(iii) In the domain where  the Einstein equations 

       should be modified;

(iv) Limiting curvature condition (LCC ): | | .  is a 

      dimensionless universal constant, defined  by the 
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Quadratic in curvature invaria
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| | 1.  In a static ST: ,

Apparent horizon: 0.               

     General form of SS metric in 
          advanced time coordina
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If ST is regular at 0, 

the apparent horizon ca
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LCC is valid

Static nonsingular BH .

( )
A s

(Quadratic) curvature i

tatic SSBH with =1 an

nvariants are 

        

Metrics with 2 cannot be consistent 

        

Nonsingular BH:

     fini

metr

d .

e .

 

)

t

(

i

n

n

P r
f

Q r

s

n

 =

+

 cs for

a nonsingular black hole. [V.F. PR D94,104056 (2016)].
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3 example: Hayward metric ('06): 
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Mass-gap for mini BHs formation is 

a generic feature for NS BH models.
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DeSitter core at the cen
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Hawking out-going radiation in the BH exterior is

accompanied by the in-coming energy fluxes in

the BH interior. One can approximate these fluxes

by the in-coming null fluid.
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In GR: a backreaction of  results in 

Vaidya solution: ( ). Null fluid 

matter is absorbed by a singularity, and 

no out-going null fluid: 0.
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Near inner horiz

Nonsingular BH: Inside 

on a divergence : 
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HBH: The core is a "condensate" with 

density  and deSitter like equation 

of state. It totally absorbes in-coming 

radiation, and namely this makes it 

possible the validity of .LCC



Evaporating NS black hole model
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 The apparent horizon is closed and has "O-shape"

   on ( , ) plane. Its topology in 4D ST is 

        

 (torus);

 No event horizo

     For complete evapora

n and no black hole

   (in its exact m
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 No loss of information;

 It returns back after a time-delay determined

   by the evaporation time.

•

•



During all the evolution of -dependent 

Hayward metric the quadratic curvature 

invariants remain uniformly bounded and 

the metric obeys LCC.
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(i) An apparent horizon in a regular metric cannot cross 0.

(ii) It has two branches: outer- and inner-horizons.

(iii) Non-singular BH model with a cl
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In the vicinity of this point:
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     Near-threshold metric
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To estimate the rate of change of mass at the

final stage of the evaporation we use arelati

Formally time of BH evaporation is infinite.
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BH remnant (geon-type)

 



 

= +
2

2 2 2

Embedding diagram 

for a slice t=const of 

the subcritial metric 
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Let  be a timelike ( surface in a static ST

and =  be a unit vector orthogonal to 
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Final st  age:
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V.F., Markov, and Mukhanov ('89,'90)

Closed universe formation inside the 

black hole. 
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Robust properties of nonsigular black holes:

 Existence of inner branch of the apparent horizon;

 For completely evaporating BH the apparent 

   horizon has torus

      

-lik

           Instead of summary
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 Mass gap for mini black holes;
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 Absorbing DeSitter-like core;

 No mass inflation;

 Geon-type remnant.
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