Asymptotic freedom and higher derivative gauge theories

Lesław Rachwał

Department of Physics, Institute for Exact Sciences (ICE)
Federal University of Juiz de Fora (UFJF)
(Juiz de Fora, MG, Brazil)

e-mail: grzerach@gmail.com

Quantum Gravity, Higher Derivatives & Nonlocality, QGRAV 2021

8-12 March 2021

Online via Zoom/Physics Dept., Tokyo Institute of Technology, Japan

This talk is based on a collaboration with profs. Manuel Asorey and Fernando Falceto (University of Zaragoza, Spain)

and based on the paper arXiv:2012.15693v2 [hep-th] (click it!)

Affiliation

This work was partially financed by European Union e-Cost action as a Short Term Scientific Mission (STSM), within the COST action MP1405-37241 for the group Effective Theories of Quantum Gravity and Quantum Structure of Spacetime WG3, in QSpace program

3 / 20

Motivation for HD theories

Gauge theories with higher derivatives

- covariant ultraviolet regularizations of gauge theories (Slavnov, Lee, Zinn-Justin)
- very efficient effective theories in strongly correlated regimes of standard QCD
- might provide ultraviolet completions of the Standard Model
- better control over UV perturbative divergences
- super-renormalizable and UV-finite models of gauge theories
- arise as first two leading terms in the continuum limit of Wilson's action of lattice gauge theories

Motivation from QG

HD gauge theories are simpler framework to understand HD QG theories

Motivation from Quantum Gravity

Modest approach:

Let's first quantize matter, put it on curved spacetime background, only later quantize gravitation (Utiyama, De Witt, Shapiro)

Observation:

1-loop off-shell divergences of standard matter theory (with two derivatives) are proportional to R^2 and C^2 on a curved spacetime background. Gravitational counterterms in external background metric needed to be added to the divergent matter effective action are of these types R^2 and C^2 (in d=4), even if the gravitational theory was Einstein-Hilbert Quantum Gravity with R in the action

Conclusion:

These counterterms contain higher derivatives of the background metric. Higher derivatives in QG are inevitable!

HD gauge theories - definition

Action functional

• pure HD YM theory in Euclidean framework in d=4

$$S = \frac{1}{4g^2} \int d^4x \, F^a_{\mu\nu} F^{\mu\nu\,a} + \frac{1}{4g^2 \Lambda^{2n}} \int d^4x \, F^a_{\mu\nu} \, \Delta^n \, F^{\mu\nu\,a} \qquad (1)$$

 \bullet definition of the Δ operator

$$\Delta = (\Delta)_{\mu \, a}^{\nu \, b} = -D^2 \delta_{\mu}^{\nu} \delta_{a}^{b} + 2f^{b}_{ca} F_{\mu}^{\nu c} \tag{2}$$

gauge-covariant derivative

$$D_{\mu}X^{a} = \partial_{\mu}X^{a} + f^{abc}A^{b}_{\mu}X^{c} \tag{3}$$

ullet Hodge-covariant Laplacian operator $\Delta=d_A^*d_A+d_Ad_A^*$

Useful generalization

$$\Delta \to {}^{\lambda}\Delta = {}^{\lambda}\Delta_{\mu\,a}^{\nu\,b} = -\delta_a^b\delta_\mu^\nu D^2 + 2\lambda f^b{}_{ca}F_\mu{}^{\nu c}. \tag{4}$$

Quantization of HD gauge theories

Covariant formalism

addition of Lorentz-covariant gauge fixing

$$S_{\alpha} = \frac{\alpha}{2g^{2}\Lambda^{2n}} \int d^{4}x \, \partial^{\mu} A_{\mu}^{a} (-\partial^{\sigma}\partial_{\sigma})^{n} \partial^{\nu} A_{\nu}^{a} \tag{5}$$

- Faddeev-Popov quantization
- addition of FP ghosts and third ghosts for HD

Power counting of UV-divergences

superficial degree of divergence

$$\omega \leqslant 4 - 2n(L - 1) - E \tag{6}$$

(L - number of loops, $E \geqslant 2$ - number of external gluons, 2n - number of additional derivatives above 2 in standard YM)

- for n = 1 divergences at one- and two-loop level
- for n > 1 HD gauge theory is super-renormalizable (divergences only at one-loop)

Computation of UV-divergences

One-loop computation

- in Minkowski spacetime formalism
- using dimensional regularization $\epsilon = 4 d$
- for 2-pt gluonic function
- from one-loop vacuum polarization diagrams

Feynman diagrams needed for 2-pt function

- middle diagram (with FP ghost) is the same for any $n \ge 0$
- last diagram vanishes in DIMREG for n = 0

Results for 2-pt function

UV-divergent part

vacuum polarization function

$$\Gamma^{ab}_{\mu\nu}(p) = -c_n \frac{C_2(G)}{16\pi^2 \epsilon} i\delta^{ab} \left(p^2 \eta_{\mu\nu} - p_\mu p_\nu \right) \tag{7}$$

coefficients c_n

$$c_0 = \alpha - \frac{13}{3}$$
, $c_1 = -\frac{43}{3}$ and $c_n = \frac{29}{3} - 23n + 5n^2$ for $n \geqslant 2$ (8)

- n = 1 results of Babelon-Namazie
- $n \ge 2$ results of Asorey-Falceto
- perturbative UV-form of modified beta functions for $n \ge 1$

$$\beta_n = c_n \frac{g^3 C_2(G)}{32\pi^2} \tag{9}$$

Renormalization

Renormalized action

2-derivative action with counterterms

$$S_{\text{count}} = c_n \frac{C_2(G)}{128\pi^2} \left(\frac{2}{\epsilon} + \log \frac{\Lambda_{\text{QCD}}^2}{\Lambda^2} \right) F_{\mu\nu}^{a} F^{\mu\nu a}$$
(10)

- added a finite counterterm to the minimal renormalization $\log \frac{\Lambda_{\rm QC}}{\Lambda^2}$
- recover in the IR the renormalized two-point function of QCD
- ullet no gluon wave-function renormalization for $n\geqslant 1$
- renormalization to every loop order in n = 0
- ullet only one-loop renormalization for n>1
- for $n \ge 1$ no α -dependence

Renormalized 2-pt function

$$\Gamma^{ab}_{\mu\nu}(p) = -\frac{C_2(G)}{32\pi^2} i\delta^{ab} \left(p^2 \eta_{\mu\nu} - p_{\mu} p_{\nu}\right) \Pi(p^2),$$
 (11)

Polarization function $\Pi(p^2)$ vs. logarithmic energy scale

RG flow in HD gauge theories

Beta functions

$$\beta_{\text{UV}} = c_n \frac{g^3 C_2(G)}{32\pi^2} \quad \text{and} \quad \beta_{\text{IR}} = -\frac{22}{3} \frac{g^3 C_2(G)}{32\pi^2}$$
 (12)

Asymptotic freedom β < 0 in UV

coefficients in theories $n \leq 4$

$$\widetilde{c}_0 = -\frac{22}{3}, \quad c_1 = -\frac{43}{3}, \quad c_2 = -\frac{49}{3}, \quad c_3 = -\frac{43}{3}, \quad c_4 = -\frac{7}{3}$$
 (13)

RG running

flow of the bare coupling constant

$$g_{\text{bare}}^{2}(\mu) = g^{2} \left(1 - \frac{g^{2} C_{2}(G)}{(4\pi)^{2}} c_{n} \log \mu / \Lambda \right)^{-1}$$
 (14)

RG flow in HD gauge theories

RG flow of the HD scale Λ

no-renormalization of the HD term

$$\frac{1}{4g^2\Lambda^{2n}} \int d^4x \, F^a_{\mu\nu} \, \Delta^n \, F^{\mu\nu a} \tag{15}$$

constancy of the front coefficient

$$g^2 \Lambda^{2n} = g_{\text{bare}}^2 \Lambda_{\text{bare}}^{2n} = \text{const} \quad \text{hence} \quad \beta_{\Lambda} = -\frac{\Lambda}{ng} \beta_n$$
 (16)

UV regime

• if the g coupling is asymptotically free (AF)

$$g_{\rm bare} \to 0$$
 (17)

• then the running $\Lambda_{\rm bare}$ scale parameter must run

$$\Lambda_{\rm bare} \to +\infty, \quad m_{\rm gh} \sim \Lambda_{\rm bare} \to +\infty$$
(18)

Generalized results

Generalized $^{\lambda}\Delta$ operator

$$\Delta \to {}^{\lambda}\Delta = {}^{\lambda}\Delta_{\mu a}^{\nu b} = -\delta_a^b \delta_{\mu}^{\nu} D^2 + 2\lambda f^b{}_{ca} F_{\mu}{}^{\nu c}$$
 (19)

Beta functions

general expression

$$\beta_{\rm UV} = c_n \frac{g^3 C_2(G)}{32\pi^2}$$
 (20)

• for n=1

$$c_1 = \frac{38}{3} - 18\lambda - 9\lambda^2 \tag{21}$$

• for $n \ge 2$

$$c_n = -\frac{7}{3} + 5n + 4n^2 - (4 + 10n + 4n^2) \lambda + (16 - 18n + 5n^2) \lambda^2$$
 (22)

For some values λ_* of the λ parameter possibility of UV-finite theory

Region of AF HD gauge theories

UV-finite gauge theories

Values of λ_* with ${}^{\lambda}\Delta$ operator

$$n = 1$$
 $\lambda_1 = -2.55$ $\lambda_2 = 0.55$
 $n = 2$ $\lambda = 0.59$
 $n = 3$ $\lambda_1 = 0.75$ $\lambda_2 = 9.25$
 $n = 4$ $\lambda_1 = 0.96$ $\lambda_2 = 3.54$

contains cubic $(O(F^3))$ and quartic killers $(O(F^4))$

Quartic killers

Addition of pure gauge-covariant quartic killers Modesto, Piva

$$S_{\text{UV, fin}} = \int d^4x \frac{1}{4g^2} \text{tr} \left[\mathbf{F} \left(\frac{D^2}{\Lambda^2} \right)^n \mathbf{F} + \frac{s_g}{\Lambda^4} (\mathbf{F}^2) \left(\frac{D^2}{\Lambda^2} \right)^{n-2} (\mathbf{F}^2) \right]$$
(23)

with value of the killer coefficient

$$s_g = 2\pi^2 \frac{\beta_n}{g^3} = \frac{C_2(G)}{16} \left(-\frac{7}{3} + 5n + 4n^2 \right)$$
 (24)

Conclusions

Final comments

- super-renormalizable HD gauge theory for $n \ge 2$
- UV asymptotically free theory for $\lambda = 1$ and n < 5
- ullet decoupling of ghosts in AF theory $(m_{
 m gh}\sim \Lambda_{
 m bare}
 ightarrow +\infty)$
- ullet consistent UV-completion of HD gauge theory puts constraints on n and λ
- possibility for UV-finite theories

Applications

- expansion of the continuum limit of lattice gauge theory, HD QCD
- axion physics phenomenology
- more room for GUT unification
- Lorentz- and gauge-covariant regularization of YM theories
- lessons for Quantum Gravity

Literature

- O. Babelon and M. A. Namazie, Comment on the ghost problem in a higher derivative Yang-Mills theory, J. Phys. A 13, L27-L30 (1980). http://dx.doi.org/10.1088/0305-4470/13/2/005
- M. Asorey and F. Falceto, Geometric Regularization of Gauge Theories, Nucl. Phys. B 327, 427 (1989). http://dx.doi.org/10.1016/0550-3213(89)90278-2
- M. Asorey and F. Falceto, On the consistency of the regularization of gauge theories by high covariant derivatives, Phys. Rev. D 54, 5290-5301 (1996) [arXiv:hep-th/9502025 [hep-th]]. http://dx.doi.org/10.1103/PhysRevD.54.5290
- M. Asorey, J. L. Lopez and I. L. Shapiro, Some remarks on high derivative quantum gravity, Int. J. Mod. Phys. A 12, 5711-5734 (1997) [arXiv:hep-th/9610006 [hep-th]]. http://dx.doi.org/10.1142/S0217751X97002991

Literature ctd.

- L. Modesto and L. Rachwał, Super-renormalizable and Finite Gravitational Theories, Nucl. Phys. B 889, 228 (2014) [arXiv:1407.8036 [hep-th]].
 - http://dx.doi.org/10.1016/j.nuclphysb.2014.10.015
- L. Modesto and L. Rachwał, *Universally Finite Gravitational* & Gauge Theories, Nucl. Phys. B **900**, 147 (2015) [arXiv:1503.00261 [hep-th]].
 - http://dx.doi.org/10.1016/j.nuclphysb.2015.09.006
- L. Modesto, M. Piva and L. Rachwał, Finite quantum gauge theories, Phys. Rev. D 94, no. 2, 025021 (2016) [arXiv:1506.06227 [hep-th]]. http://dx.doi.org/10.1103/PhysRevD.94.025021
- M. Asorey, L. Rachwał, I. Shapiro, Unitarity issues in higher derivative field theories, Galaxies 6 (2018) 23:1-7 [arXiv:2002.10839 [hep-th]]. http://dx.doi.org/10.1140/epjc/s10052-020-8325-8

Thank you!
Obrigado!
Arigato!

ありがとうございました