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The higher-derivative model without ghosts
The specific type of f (R) gravity in metric formalism:

S =

∫ (
R

16πG
+ A(R)R2

)√−g d4x

with A(R) > 0 slowly depending on R
(|A′| � AR−1, |A′′| � AR−2).

1. Why using f (R) gravity (and in metric formalism):
a) to have a scalar gravitational degree of freedom;
b) to follow the Einstein’s way of geometrization of physics as
much as possible, at least in the approximate form.

2. Why using the correction to GR close to R2?
a) From the classical side, such model likes de Sitter
space-times (in the absence of the Einstein term and
A = const, DS or ADS with any curvature is a solution).
b) From the quantum side, A(R) is dimensionless.





Inflation
The (minimal variant of the) inflationary scenario is based on
the two cornerstone independent ideas (hypothesis):

1. Existence of inflation (or, quasi-de Sitter stage) – a stage of
accelerated, close to exponential expansion of our Universe in
the past preceding the hot Big Bang with decelerated,
power-law expansion.

2. The origin of all inhomogeneities in the present Universe is
the effect of gravitational creation of pairs of particles -
antiparticles and field fluctuations during inflation from the
adiabatic vacuum (no-particle) state for Fourier modes
covering all observable range of scales (and possibly somewhat
beyond).

NB. This effect is the same as particle creation by black holes,
but no problems with the loss of information, ’firewalls’,
trans-Planckian energy etc. in cosmology, as far as
observational predictions are calculated.



Both assumptions can be combined into one:
Some part of the world which includes all its presently
observable part was as much symmetric as possible during
some period in the past - both with respect to the geometrical
background and to the state of all quantum fields (no
particles).

Non-universal (due to the specific initial condition) explanation
of the cosmological arrow to time - chaos, ”entropy” (in some
not well defined sense) can only grow after inflation.
Still this state is an intermediate attractor for a set of
pre-inflationary initial conditions with a non-zero measure.

Remark regarding these initial conditions for perturbations:
they are not in the Bunch-Davies state in the rigorous sense,
since this state may not be imposed for arbitrary large scales.
As a consequence, inflationary models typically does not
predict regular behaviour at spatial infinity both during and
after inflation (”multiverse”).



Existing analogies in other areas of physics.

1. The present dark energy, though the required degree of
metastability for the primordial dark energy is much more than
is proved for the present one (more than 60 e-folds vs. ∼ 3).

2. Creation of electrons and positrons in an external electric
field.



Outcome of inflation
In the super-Hubble regime (k � aH) in the coordinate
representation:

ds2 = dt2 − a2(t)(δlm + hlm)dx ldxm, l ,m = 1, 2, 3

hlm = 2R(r)δlm +
2∑

a=1

g (a)(r) e(a)
lm

e
l(a)
l = 0, g

(a)
,l e

l(a)
m = 0, e

(a)
lm e lm(a) = 1

R describes primordial scalar perturbations, g – primordial
tensor perturbations (primordial gravitational waves (GW)).

The most important quantities:

ns(k)− 1 ≡ d lnPR(k)

d ln k
, r(k) ≡ Pg

PR



In fact, metric perturbations hlm are quantum (operators in
the Heisenberg representation) and remain quantum up to the
present time. But, after omitting of a very small part,
decaying with time, they become commuting and, thus,
equivalent to classical (c-number) stochastic quantities with
the Gaussian statistics (up to small terms quadratic in R, g).
In particular:

R̂k = Rk i(âk−â†k)+O
(

(âk − â†k)2
)

+...+O(10−100)(âk+â†k)+, , ,

The last non-commutative term is time dependent, it is
affected by physical decoherence and may become larger, but
not as large as the second term.
Remaining quantum coherence: deterministic correlation
between k and −k modes - shows itself in the appearance of
acoustic oscillations (primordial oscillations in case of GW).



All these predictions are beyond semiclassical gravity!

Semiclassical gravity: space-time metric gik is not quantized
and

1

8πG

(
Rν
µ −

1

2
δνµR

)
(gik) =

〈
T̂ ν
µ (gik)

〉
Instead,

1

8πG

(
R̂ν
µ −

1

2
δνµR̂

)
(ĝik) = T̂ ν

µ

is used.

〈R〉 = 0 does not mean the absence of perturbations.



CMB temperature anisotropy

Planck-2015: P. A. R. Ade et al., arXiv:1502.01589



CMB temperature anisotropy multipoles
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CMB E-mode polarization multipoles
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New cosmological parameters relevant to inflation
Now we have numbers: N. Agranim et al., arXiv:1807.06209

The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum ns = 1 in
the first order in |ns − 1| ∼ N−1

H has been discovered (using
the multipole range ` > 40):

< R2(r) >=

∫
PR(k)

k
dk , PR(k) = (2.10± 0.03)·10−9

(
k

k0

)ns−1

k0 = 0.05 Mpc−1, ns − 1 = −0.035± 0.004, r < 0.065

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant).
Existing inflationary models can predict (and predicted, in
fact) one of them, namely ns − 1, relating it finally to
NH = ln kB Tγ

~H0
≈ 67.2. (note that (1− ns)NH ∼ 2).



The simplest models producing the observed ns
1. The R + R2 model (Starobinsky, 1980):

L =
f (R)

16πG
, f (R) = R +

R2

6M2

M = 2.6× 10−6

(
55

N

)
MPl ≈ 3.1× 1013 GeV

ns − 1 = − 2

N
≈ −0.036, r =

12

N2
≈ 0.004

N = ln
kf

k
= ln

Tγ
k
−O(10), HdS (N = 55) = 1.4× 1014 GeV

2. The same prediction for a scalar field model with
V (φ) = λφ4

4
at large φ and strong non-minimal coupling to

gravity ξRφ2 with ξ < 0, |ξ| � 1 (Spokoiny, 1984), including
the Higgs inflationary model (Bezrukov and Shaposhnikov,
2008).



The simplest purely geometrical inflationary model

L =
R

16πG
+

N2

288π2PR(k)
R2 + (small rad. corr.)

=
R

16πG
+ 5.1× 108 R2 + (small rad. corr.)

The quantum effect of creation of particles and field
fluctuations works twice in this model:
a) at super-Hubble scales during inflation, to generate
space-time metric fluctuations;
b) at small scales after inflation, to provide scalaron decay into
pairs of matter particles and antiparticles (AS, 1980, 1981).

Weak dependence of the time tr when the radiation dominated
stage begins:

N(k) ≈ NH + ln
a0H0

k
− 1

3
ln
MPl

M
− 1

6
ln(MPltr ), MPl = G−1/2.



Evolution of the R + R2 model

1. During inflation (H � M):

H =
M2

6
(tf − t) +

1

6(tf − t)
+ ..., |Ḣ | � H2

.
(for the derivation of the second term in the rhs - see
A. S. Koshelev et al., JHEP 1611 (2016) 067).

2. After inflation (H � M):

a(t) ∝ t2/3

(
1 +

2

3Mt
sinM(t − t1)

)



The most effective decay channel: into minimally coupled
scalars with m� M . Then the formula

1√−g
d

dt
(
√−gns) =

R2

576π

(Ya. B. Zeldovich and A. A. Starobinsky, JETP Lett. 26, 252
(1977)) can be used for simplicity, but the full
integral-differential system of equations for the Bogoliubov
αk , βk coefficients and the average EMT was in fact solved in
AS (1981). Scalaron decay into graviton pairs is suppressed
(A. A. Starobinsky, JETP Lett. 34, 438 (1981)).

For this channel of the scalaron decay:

Γ =
GM3

24
, N(k) ≈ NH + ln

a0H0

k
+

5

6
ln(G 1/2M)

that gives N(k = 0.002Mpc−1) ≈ 54. For the Higgs and the
mixed R2-Higgs models, N(k = 0.002Mpc−1) ≈ 58, the
increase is mainly due to the large Higgs non-minimal coupling.



Scalaron decay in more details

The trial scale factor behaviour:

a(t) = r(t)

[
1 +

ψ(t)

r 3/2(t)
sinM

(
t − t1 +

∫ t

δ(t̃) dt̃

)]
Light particles creation by this scale factor occurs mainly at
r(t) = 2k/M . The main contribution to their energy density is

ρm =
1

2π2r 4

∫ Mr(t)/2

0

k3|βk(∞)|2dk ,

1

r 4

d

dt

(
ρmr

4
)

= ΓρM , ρM = MnM ≡
3ψ2M2

8πGr 3
.



The second step: taking back reaction of created particles into
account. Consider the exact trace equation

R +
1

M2
�R = 8πG < T >m,

6

(
r̈

r
+

(
ṙ

r

)2
)
− 3ψ2M2

r 3
− 12ψ̇M

r 3/2
cosM(t − t1) +

+
12δψM2

r 3/2
sinM(t − t1) + ... = 8πG < T >m .

By expressing < T >m through βk(t), keeping only first order
terms, and equating the terms having the cosM(t − t1) time
dependence, we get:

ψ̇ +
Γψ

2
= 0.

δ is determined by equating terms ∝ sinM(t − t1).



Possible microscopic origins of this phenomenological model.

1. Follow the purely geometrical approach and consider it as
the specific case of the fourth order gravity in 4D

L =
R

16πG
+ AR2 + BCαβγδC

αβγδ + (small rad. corr.)

for which A� 1, A� |B |. Emergence of hierarchy!
Approximate scale (dilaton) invariance and absence of ghosts
in the curvature regime A−2 � (RR)/M4

P � B−2.

One-loop quantum-gravitational corrections are small (their
imaginary parts are just the predicted spectra of scalar and
tensor perturbations), non-local and qualitatively have the
same structure modulo logarithmic dependence on curvature.



2. Another, completely different way:

consider the R + R2 model as an approximate description of
GR + a non-minimally coupled scalar field with a large
negative coupling ξ (ξconf = 1

6
) in the gravity sector::

L =
R

16πG
− ξRφ2

2
+

1

2
φ,µφ

,µ − V (φ), ξ < 0, |ξ| � 1 .

Geometrization of the scalar:

for a generic family of solutions during inflation, the scalar
kinetic term can be neglected, so

ξRφ = −V ′(φ) +O(|ξ|−1) .

No conformal transformation, we remain in the the physical
(Jordan) frame!



These solutions are the same as for f (R) gravity with

L =
f (R)

16πG
, f (R) = R − ξRφ2(R)

2
− V (φ(R)).

For V (φ) =
λ(φ2−φ2

0)2

4
, this just produces

f (R) = 1
16πG

(
R + R2

6M2

)
with M2 = λ/24πξ2G and

φ2 = |ξ|R/λ.

The same theorem is valid for a multi-component scalar field.

More generally, R2 inflation (with an arbitrary ns , r) serves as
an intermediate dynamical attractor for a large class of
scalar-tensor gravity models.

However, this property suddenly breaks immediately after the
end of inflation when R becomes negative temporarily during
oscillations.



Inflation in the mixed R2-Higgs model
M. He, A. A. Starobinsky and J. Yokoyama, JCAP 1805, 064
(2018).

L =
1

16πG

(
R +

R2

6M2

)
−ξRχ

2

2
+

1

2
χ,µχ

,µ−λχ
4

4
, ξ < 0, |ξ| � 1

Can be conformally transformed to GR with two interacting
scalar fields in the Einstein frame. The effective two scalar
field potential for the dual model:

U = e−2αφ

(
λ

4
χ4 +

M2

2α2

(
eαφ − 1 + ξκ2χ2

)2
)

α =

√
16πG

3
, R = 3M2

(
eαφ − 1 + ξκ2χ2

)



One-field inflation in the attractor regime

In the attractor regime during inflation:

αφ� 1, χ2 ≈ |ξ|R
λ
, eαφ ≈ χ2

(
8πG |ξ|+ λ

3|ξ|M2

)
that directly follows from the geometrization of the Higgs

boson in the physical (Jordan) frame. Thus, we return to the
f (R) = R + R2

6M2 model with the renormalized scalaron mass

M → M̃ :

1

M̃2
=

1

M2
+

24πGξ2

λ

Double-field inflation reduces to the single (R + R2) one for
the most of trajectories in the phase space.



Kinematic origin of scalar perturbations

Local duration of inflation in terms of Ntot = ln
(

a(tfin)
a(tin)

)
is

different in different points of space: Ntot = Ntot(r). Then

R(r) = δNtot(r)

Correct generalization to the non-linear case: the space-time
metric after the end of inflation at super-Hubble scales

ds2 = dt2 − a2(t)e2Ntot (r)(dx2 + dy 2 + dz2)

First derived in A. A. Starobinsky, Phys. Lett. B 117, 175

(1982) in the case of one-field inflation.



Visualizing small differences in the number of

e-folds
Duration of inflation in terms of e-folds was finite for all points
inside our past light cone. For ` . 50, neglecting the Silk and
Doppler effects, as well as the ISW effect due the presence of
dark energy,

∆T (θ, φ)

Tγ
= −1

5
R(rLSS , θ, φ) = −1

5
δNtot(rLSS , θ, φ)

For ns = 1,

`(` + 1)C`,s =
2π

25
Pζ

For ∆T
T
∼ 10−5, δN ∼ 5× 10−5, and for H ∼ 1014 GeV,

δt ∼ 5tPl !

Planck time intervals are seen by the naked eye!



Different types of quantum corrections to the

simplest model

I Logarithmic running of the free model parameter M with
curvature.

I Terms with higher derivatives of R considered
perturbatively (to avoid the appearance of ghosts).

I Terms arising from the conformal anomaly.

At present, no necessity to break the Lorentz invariance and to
introduce additional spatial dimensions at the energy (Hubble)
scale of inflation.



Logarithmic running of M with curvature

Due to the scale-invariance of the R + R2 model for R � M2,
one may expect logarithmic running of the dimensionless
coefficient in front of the R2 term for large energies and
curvatures. The concrete ’asymptotically safe’ model with

f (R) = R +
R2

6M2
[

1 + b ln
(

R
µ2

)]
was recently considered in L.-H. Liu, T. Prokopec,

A. A. Starobinsky, Phys. Rev. D 98, 043505 (2018).



However, comparison with CMB observational data shows that
b is small by modulus: |b| . 10−2. Thus, from the
observational point of view this model can be simplified to

f (R) = R +
R2

6M2

[
1− b ln

(
R

µ2

)]
,

for which the analytic solution exists:

ns − 1 = −4b

3

(
e

2bN
3 − 1

)−1

r =
16b2

3

e
4bN

3(
e

2bN
3 − 1

)2

For |b|N � 1, these expressions reduce to those for the
R + R2 model.



Second type: terms with higher derivatives of R

S =
1

16πG

∫
d4x
√−g

[
R + αR2 + γR�R

]
, α =

1

6M2

An inflationary regime in this model was first considered in
S. Gottlöber, H.-J. Schmidt and A. A. Starobinsky, Class.
Quant. Grav. 7, 803 (1990). But this model, if taken in full,
has a scalar ghost in addition to a physical massive scalar and
the massless graviton.

Its recent re-consideration avoiding ghosts:
A. R. R. Castellanos, F. Sobreira, I. L. Shapiro and
A. A. Starobinsky, JCAP 1812, 007 (2018).



The idea is to treat the γR�R term perturbatively with
respect to the R + R2 gravity, i.e., to consider only those
solutions which reduce to the solutions of the R + R2 gravity
in the limit γ − 0. Then the second (ghost) scalar degree of
freedom does not appear.

Results:

1. |k | . 0.3 where k = γ
6α2 .

2. In the limit kN � 1, leading corrections ∝ kN to ns − 1
and r vanish. The first result is in the agreement with that in
a more general non-local gravity model without ghosts
constructed in A. S. Koshelev, L. Modesto, L. Rachwal and
A. A. Starobinsky, JHEP 1611, 067 (2016) which contains an
infinite number of R derivatives.



Third type: terms arising from the conformal

(trace) anomaly

The tensor producing the ∝
(
RµνR

µν − R2

3

)
term in the trace

anomaly:

T ν
µ =

k2

2880π2

(
Rα
µR

ν
α −

2

3
RRν

µ −
1

2
δνµRαβR

αβ +
1

4
δνµR

2

)
It is covariantly conserved in the isotropic case only! Can be

generalized to the weakly anisotropic case by adding a term
proportional to the first power of the Weyl tensor (AS, 1981).

T 0
0 =

3H4

8πGH2
1

, T = − 1

8πGH2
1

(
RµνR

µν − R2

3

)
, H2

1 =
360π

k2G



The spectrum of scalar and tensor perturbations in this case
was calculated already in A. A. Starobinsky, Sov. Astron. Lett.
9, 302 (1983).

ns − 1 = −2β
eβN

eβN − 1
, β =

M2

3H2
1

If ns > 0.957 and N = 55, then H1 > 7.2M .



Perspectives of future discoveries

I Primordial gravitational waves from inflation: r .
r . 8(1− ns) ≈ 0.3 (confirmed!) but may be much less.
However, under reasonable assumptions one may expect
that r & (ns − 1)2 ≈ 10−3. The target prediction in the
simplest (one-parametric) models is
r = 3(ns − 1)2 ≈ 0.004.

I A more precise measurement of ns − 1 =⇒ duration of
transition from inflation to the radiation dominated stage
=⇒ information on inflaton (scalaron) couplings to known
elementary particles at super-high energies E . 1013 Gev.

I Local non-smooth features in the scalar power spectrum
at cosmological scales (?).

I Local enhancement of the power spectrum at small scales
leading to a significant amount of primordial black holes
(?).



Conclusions

I The typical inflationary predictions that |ns − 1| is small
and of the order of N−1

H , and that r does not exceed
∼ 8(1− ns) are confirmed. Typical consequences
following without assuming additional small parameters:
H55 ∼ 1014 GeV, minfl ∼ 1013 GeV.

I In f (R) gravity, the simplest R + R2 model is
one-parametric and has the preferred values
ns − 1 = − 2

N
≈ −0.035 and r = 3(ns − 1)2 ≈ 0.004. The

first value produces the best fit to present observational
CMB data. The same prediction follows for the Higgs and
the mixed R2-Higgs models though actual values of N are
slightly different for these 3 cases.

I Inflation in f (R) gravity represents a dynamical attractor
for slow-rolling scalar fields strongly coupled to gravity.



I Comparison with observational data shows that
logarithmic high-curvature quantum corrections to the
R + R2 model in the observable part of inflation are
small, no more than a few percents. The same refers to
higher-derivative and conformal anomaly corrections.

I This model does not solve the singularity problem, but in
fact this is an advantage for it since it appears that it is
much easier to reach the inflationary regime from an
anisotropic pre-inflationary space-time which has
curvature much exceeding that during inflation.

I Observational predictions for this model have been
obtained without assuming the existence of the exact
S-matrix, that requires the existence of a ’Grand-observer’
who knows all information about the initial state and can
collect all information about the final state. It is also not
assumed that the future time infinity in the Penrose
conformal diagram is a point, and not a horizontal line.
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