

Negative energies in quantum gravity

Gerard 't Hooft

Institute for Theoretical Physics Buys Ballotgebouw, Princetonplein 5, 3584 CC Utrecht POBox 80.089, 3508 TB Utrecht

Presented at QGRAV2021 Workshop: Quantum Gravity, Higher Derivatives & Nonlocality Zoom webinar

March 8, 2021

イロト 不得下 イヨト イヨト 二日

Negative energies *and metrics* in quantum gravity

Gerard 't Hooft

Institute for Theoretical Physics Buys Ballotgebouw, Princetonplein 5, 3584 CC Utrecht POBox 80.089, 3508 TB Utrecht

Presented at QGRAV2021 Workshop: Quantum Gravity, Higher Derivatives & Nonlocality Zoom webinar

March 8, 2021

イロト 不得下 イヨト イヨト 二日

QFT Feynman rules are derived from a Lagrangian

$$\mathcal{L}(x) = -\frac{1}{2}(\partial\phi^2 + M^2\phi^2) - \frac{\lambda}{3!}\phi^3 + \cdots$$

and if you have indices μ , ν , \cdots , just make sure that a gauge can be chosen such that all signs stay like this

(Time-like components of vector fields must be set to vanish, etc.)

Inverse of quadratic term, $k^2 + M^2$ is the propagator, but we need $i\varepsilon$ prescription for the pole: $\frac{1}{k^2 + M^2 - i\varepsilon}$.

(ロ) (母) (目) (日) (日) (の)

Using $\int_{-\infty}^{\infty} dx \theta(x) e^{ikx - \varepsilon x} = \frac{1}{\varepsilon - ik}$, The Feynman propagator: $\Delta^F(x) = -i \int d^4k \frac{e^{ik \cdot x}}{k^2 + M^2 - i\varepsilon}$; On shell: $\Delta^{\pm}(x) = 2\pi \int d^4k e^{ik \cdot x} \delta(k^2 + M^2) \theta(\pm k^0)$. By contour integration: $\Delta^F(x) = \theta(x^0) \Delta^+(x) + \theta(-x^0) \Delta^-(x)$; $\Delta^+(x) = \theta(x^0) \Delta^F(x) + \theta(-x^0) \Delta^F(x)^*$.

Because of these identities,

Using $\int_{-\infty}^{\infty} dx \theta(x) e^{ikx - \varepsilon x} = \frac{1}{\varepsilon - ik}$, The Feynman propagator: $\Delta^F(x) = -i \int d^4k \frac{e^{ik \cdot x}}{k^2 + M^2 - i\varepsilon}$; On shell: $\Delta^{\pm}(x) = 2\pi \int d^4k e^{ik \cdot x} \delta(k^2 + M^2) \theta(\pm k^0)$. By contour integration: $\Delta^F(x) = \theta(x^0) \Delta^+(x) + \theta(-x^0) \Delta^-(x)$; $\Delta^+(x) = \theta(x^0) \Delta^F(x) + \theta(-x^0) \Delta^F(x)^*$.

Because of these identities, *If all signs are taken correctly*, scattering matrix calculated with the Feynman rules is unitary:

propagator:

$$\begin{array}{rcl} \displaystyle \frac{1}{k^2 + M^2 - i\varepsilon} & \rightarrow & \displaystyle \frac{-1}{k^2 + M^2 - i\varepsilon} & & \text{neg. metric} \\ & \rightarrow & \displaystyle \frac{1}{k^2 + M^2 + i\varepsilon} & & \text{neg. energy.} \\ & \rightarrow & \displaystyle \frac{1}{k^2 - M^2 \pm i\varepsilon} & & \text{negative mass}^2 : \\ & & \text{tachyons, unstable} \end{array}$$

On the occurrence of **negative metric** in gravity:

In gravity, we have the non renormalizable Einstein-Hilbert action

$$\mathcal{L}_{\mathrm{tot}} = \sqrt{-g} \left(\frac{1}{16\pi G_N} \left(R - 2\Lambda \right) + \mathcal{L}^{\mathrm{matter}} \right)$$

Introduce Weyl tensor $\mathcal{C}_{\mu
ulphaeta}$ defined by

$$\begin{array}{ll} \mathcal{C}_{\mu\nu\alpha\beta} & = & \mathcal{R}_{\mu\nu\alpha\beta} - \frac{1}{2} \left(\mathcal{R}_{\mu\alpha} g_{\nu\beta} - (\mu \leftrightarrow \nu) - (\alpha \leftrightarrow \beta) + (^{\mu}_{\nu} \leftrightarrow ^{\alpha}_{\beta}) \right) \\ & + & \frac{1}{6} \, \mathcal{R} \left(g_{\mu\alpha} g_{\nu\beta} - (\mu \leftrightarrow \nu) \right) \; , \end{array}$$

such that, in 4 dim, it is traceless $(g^{\mu\alpha}C_{\mu\nu\alpha\beta}=\cdots=0)$. One derives:

٠

In gravity, we have the non renormalizable Einstein-Hilbert action

$$\mathcal{L}_{\mathrm{tot}} = \sqrt{-g} \left(\frac{1}{16\pi G_N} \left(R - 2\Lambda \right) + \mathcal{L}^{\mathrm{matter}} \right)$$

Introduce Weyl tensor $\mathcal{C}_{\mu
ulphaeta}$ defined by

$$\begin{array}{ll} \mathcal{C}_{\mu\nu\alpha\beta} & = & \mathcal{R}_{\mu\nu\alpha\beta} - \frac{1}{2} \left(\mathcal{R}_{\mu\alpha} g_{\nu\beta} - (\mu \leftrightarrow \nu) - (\alpha \leftrightarrow \beta) + \begin{pmatrix} \mu \\ \nu \end{pmatrix} \leftrightarrow \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \right) \\ & + & \frac{1}{6} \, \mathcal{R} \left(g_{\mu\alpha} g_{\nu\beta} - (\mu \leftrightarrow \nu) \right) \; , \end{array}$$

such that, in 4 dim, it is traceless $(g^{\mu\alpha}C_{\mu\nu\alpha\beta}=\cdots=0)$. One derives:

$$CC \equiv C_{\mu\nulphaeta}C^{\mu
ulphaeta} = R_{\mu
ulphaeta}R^{\mu
ulphaeta} - 2R_{\mu
u}R^{\mu
u} + rac{1}{3}R^2$$

while

$${\cal G}\equiv {\cal R}_{\mu
ulphaeta}{\cal R}^{\mu
ulphaeta}-4{\cal R}_{\mu
u}{\cal R}^{\mu
u}+{\cal R}^2$$

is a total derivative and therefore topologically invariant $\
ightarrow$

$$CC \equiv 2R_{\mu\nu}R^{\mu\nu} - \frac{2}{3}R^2$$

Using conformal invariance we can argue that this would be the only term needed to renormalize gravity. **BUT** ...

What happens if $\mathcal{L}_{\rm EH} \rightarrow \frac{\sqrt{-g}}{16\pi G_N} (R - \lambda CC)?$

Propagator tends to $1/k^4$ for large k^2 :

$$rac{1}{(k^2-iarepsilon)(1+rac{\lambda}{M_{
m Planck}^2}k^2-iarepsilon)}
ightarrow rac{1}{k^2-iarepsilon}-rac{1}{k^2+M_{
m Planck}^2/\lambda-iarepsilon}\;.$$

We see an extra particle with spin 2 and mass $\textit{M}_{\rm Planck}/\sqrt{\lambda}$, with wrong sign !

Actually interesting:

What happens if $\mathcal{L}_{\rm EH} \rightarrow rac{\sqrt{-g}}{16\pi G_N} (R - \lambda CC)$?

Propagator tends to $1/k^4$ for large k^2 :

$$rac{1}{(k^2-iarepsilon)(1+rac{\lambda}{M_{
m Planck}^2}k^2-iarepsilon)}
ightarrow rac{1}{k^2-iarepsilon}-rac{1}{k^2+M_{
m Planck}^2/\lambda-iarepsilon}\;.$$

We see an extra particle with spin 2 and mass $\textit{M}_{\rm Planck}/\sqrt{\lambda}$, with wrong sign !

Actually interesting: negative metric particle means that this is a massive object that has to be *removed* from the spectrum of allowed states!

Or,

Gravity has fewer particle- or matter- states than suggested by $\mathcal{L}_{\rm EH}.$

Negative energy:

should not be accepted in any theory unless its origin is fully explained. In BEH models, we have

$$V(\phi) = \frac{1}{2}\lambda(\phi^2 - F^2)^2 = \frac{1}{2}\lambda F^2 - \lambda F^2 \phi^2 + \frac{1}{2}\lambda \phi^4 .$$

wrong \uparrow
sign

 $\phi = {\it F} + \tilde{\phi}~~{\rm gives}~{\rm correct}~{\rm sign:}$

Negative energy:

should not be accepted in any theory unless its origin is fully explained. In BEH models, we have

$$V(\phi) = \frac{1}{2}\lambda(\phi^2 - F^2)^2 = \frac{1}{2}\lambda F^2 - \lambda F^2 \phi^2 + \frac{1}{2}\lambda \phi^4 .$$

wrong \uparrow
sign

$$\begin{split} \phi = F + \tilde{\phi} \ \text{gives correct sign:} &= \lambda F^2 \tilde{\phi}^2 + 2\lambda F \tilde{\phi}^3 + \frac{1}{2} \lambda \tilde{\phi}^4 \\ \uparrow \underset{\text{sign}}{\text{correct}} \end{split}$$

Negative energies are important for understanding QM. But first:

The generic deterministic model that can be handled by quantum mechanical techniques:

Negative energies are important for understanding QM. But first:

The generic deterministic model that can be handled by quantum mechanical techniques:

イロト イポト イヨト イヨト

Negative energies are important for understanding QM. But first:

The generic deterministic model that can be handled by quantum mechanical techniques:

(a)

Negative energies are important for understanding QM. But first:

The generic deterministic model that can be handled by quantum mechanical techniques:

Recently proved: *We can reproduce any quantum system using such models*

Fast fluctuating variables generate sequences of high energy modes. We then expect that only the lowest modes are expected. One then finds that fast fluctuations also arise in the low energy modes. And these accurately reproduce quantum mechanics

But not always the highest energy modes stay empty. What about the Big Bang? What about the inside or the horizon of a black hole? Why is the dominant part of the universe so close to the *lower bound* of the energy? *Never* the upper bound? Shouldn't there be a symmetry $E \leftrightarrow E^{\max} - E$?

But not always the highest energy modes stay empty. What about the Big Bang? What about the inside or the horizon of a black hole? Why is the dominant part of the universe so close to the *lower bound* of the energy? *Never* the upper bound? Shouldn't there be a symmetry $E \leftrightarrow E^{\max} - E$?

This symmetry is needed in gravity ! At the black hole horizon.

Penrose diagram for <u>eternal black hole</u> (the only Penrose diagram to be used to describe energy eigenstates).

Region *II* describes the *T*- reflection of the black hole. Nature is only invariant under *PCT*. So the is a *PCT* reflection.

At the origin of the Penrose diagram (an S2 sphere) spacetime is glued onto its *PCT* reflection. This turns S2 into a *projective sphere*. But, we emphasize that, due to time reflection,

 At the origin of the Penrose diagram (an S2 sphere) spacetime is glued onto its *PCT* reflection. This turns S2 into a *projective sphere*. But, we emphasize that, due to time reflection,

 $\begin{array}{rrrr} t & \leftrightarrow & -t \\ i & \leftrightarrow & -i \\ E & \leftrightarrow & -E \quad [?] \\ \text{vacuum state} & \leftrightarrow \quad \text{anti-vacuum} \equiv \text{full state.} \end{array}$

And *that's* where the imploding matter went: beyond the horizon, space-time is full! Energy did not go to minus energy, but to $E_{\text{max}} - E$.

But does $E_{\rm max}$ not generate 'strong' gravitational fields ?? Sure it does !! It modifies the topological shape of space and time by generating the antipodal identification.

Hawking radiation acts similarly at the final stages of a black hole (time reversal symmetry)

Opening up (collapse) and closing in (final evaporation) of a black hole:

Black emptiness: blue regions are the accessible part of space-time; dotted lines indicate identification.

The white sphere within is *not* part of space-time. Call it a 'vacuole'.

Opening up (collapse) and closing in (final evaporation) of a black hole:

Black emptiness: blue regions are the accessible part of space-time; dotted lines indicate identification.

The white sphere within is *not* part of space-time. Call it a 'vacuole'.

At given time t, the black hole is a 3-dimensional vacuole. The entire life cycle of a black hole is a vacuole in 4-d Minkowski space-time: *an* **instanton**

N.Gaddam, O.Papadoulaki, P.Betzios (Utrecht former PhD students)

Space coordinates change sign at the identified points - and also time changes sign (Note: time stands still at the horizon itself).

THANK YOU

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Utrecht University

Determinism in General Physics and the Foundation of Quantum Mechanics

arxiv: 2010.02019 (5 oct. 2020)

Open Seminar on Theoretical Physics Moscow Institute of Physics and Technology

Gerard 't Hooft

イロト 不同下 イヨト イヨト

-

15/13

12 November, 2020

At large time and distance scales the laws of nature appear to be entirely deterministic.

But at the atomic scale, indeterminism seems to emerge: quantum mechanics.

Whence this mysterious fact? Why are we unable to follow atoms and molecules more precisely when they evolve?

Copenhagen: do not ask that question, just follow the rules and you get the best predictions that are possible.

> Alas, the predictions come in the form of probabilities. Like the predictions of the weather.

We wish to explain where the statistical fluctuations come from. Is there an underlying, deterministic set of laws? How can we find them? According to J.S. Bell, CHSH, A.Aspect and many others: NO !!

We wish to explain where the statistical fluctuations come from. Is there an underlying, deterministic set of laws? How can we find them? According to J.S. Bell, CHSH, A.Aspect and many others: *NO !!*

But they assumed a formalism for causality that one can question:

We wish to explain where the statistical fluctuations come from. Is there an underlying, deterministic set of laws? How can we find them? According to J.S. Bell, CHSH, A.Aspect and many others: NO !!

But they assumed a formalism for causality that one can question: *That's not causality as we use it in particle physics!*

We wish to explain where the statistical fluctuations come from. Is there an underlying, deterministic set of laws? How can we find them? According to J.S. Bell, CHSH, A.Aspect and many others: NO !!

But they assumed a formalism for causality that one can question: *That's not causality as we use it in particle physics!*

They assume statistical independence.

We wish to explain where the statistical fluctuations come from. Is there an underlying, deterministic set of laws? How can we find them? According to J.S. Bell, CHSH, A.Aspect and many others: NO !!

But they assumed a formalism for causality that one can question: *That's not causality as we use it in particle physics!*

They assume statistical independence.

But I think something is happening that they did not foresee, and it explains where the stochastic behaviour may come from!

an <u>unstable particle</u>, regardless whether it decays in nanoseconds of with lifetimes of billions of years, follows an *exponential decay law*. Can this be squared with determinism?

an <u>unstable particle</u>, regardless whether it decays in nanoseconds of with lifetimes of billions of years, follows an *exponential decay law*. Can this be squared with determinism?

Yes ! Just assume that our vacuum is filled with white noise. In practice, this white noise will be completely stochastic, yet we may well assume some deterministic random noise generating agent is responsible, such as: *vacuum fluctuations*.

They do not have to be purely random, any local randomising but deterministic e.o.m. can generate such noise.

an <u>unstable particle</u>, regardless whether it decays in nanoseconds of with lifetimes of billions of years, follows an *exponential decay law*. Can this be squared with determinism?

Yes ! Just assume that our vacuum is filled with white noise. In practice, this white noise will be completely stochastic, yet we may well assume some deterministic random noise generating agent is responsible, such as: *vacuum fluctuations*.

They do not have to be purely random, any local randomising but deterministic e.o.m. can generate such noise.

Apparently, we need a theory where the vacuum is a busy place:

an <u>unstable particle</u>, regardless whether it decays in nanoseconds of with lifetimes of billions of years, follows an *exponential decay law*. Can this be squared with determinism?

Yes ! Just assume that our vacuum is filled with white noise. In practice, this white noise will be completely stochastic, yet we may well assume some deterministic random noise generating agent is responsible, such as: *vacuum fluctuations*.

They do not have to be purely random, any local randomising but deterministic e.o.m. can generate such noise.

Apparently, we need a theory where the vacuum is a busy place:

A particle decays when noise from the surrounding "vacuum" makes it decay, either rarely, or quickly.

Can one construct models along such lines?

Yes! and much more. I'll show you how.

Easy to understand – but perhaps not convinving ... : The Cellular Automaton: Only *classical* evolution equations.

(Quantum field lattice: same with quantum evolution equations)

Claim:

- Every cellular automaton is mathematically equivalent to a genuine quantum field theory on a lattice.
- Every lattice quantum field theory can be accurately approximated by a *classical* cellular automaton.

One needs to understand that every *classical* system can be described in the *quantum language* (Copenhagen) as if it were a *quantum system where the wave function does not spread in time*:

Hamiltonian linear in the momenta.

Operators are arranged in the following classes:

• Beables,

refer to things that are 'truly there'. All beable operators commute with one another, at all times.

• Changeables,

transform beables into other beables,

• Superimposables,

all other operators.

But beware, this is only the first step.

Basic Ingredient for Models

using Discrete Fourier transformation:

1. The periodic chain.

Ontological states:

$$|0\rangle, |1\rangle, \ldots |N-1\rangle$$

Evolution law:

 $|k\rangle_{t+\delta t} = U(\delta t) |k\rangle_t$

 $U(\delta t)|k
angle = |k+1 \mod N
angle$

$$U(\delta t) = e^{-iH\,\delta t} , \quad \frac{\mathrm{d}|\psi\rangle}{\mathrm{d}t} = -i\,H|\psi
angle$$

$$|k\rangle^{\text{ont}} = \frac{1}{\sqrt{N}} \sum_{n=0} e^{-2\pi i k n/N} |n\rangle^{E}$$

H =

2. The continuum limit.

Ontological states: $|\phi\rangle$ Evolution law: $\frac{d}{dt}|\phi\rangle_t = \omega$ $U(\delta t)|\phi\rangle = |\phi + \omega t\rangle$ $U(\delta t) = e^{-iH\delta t}, \quad \frac{d|\psi\rangle}{dt} = -iH|\psi\rangle$

(日) (四) (注) (注) (三)

We generate exactly the spectrum of the harmonic oscillator:

We generate exactly the spectrum of the harmonic oscillator:

H =

We generate exactly the spectrum of the harmonic oscillator:

 $H = \omega n$

23 / 13

イロト イポト イヨト イヨト

Finite, deterministic, time reversible models

Finite, deterministic, time reversible models

Finite, deterministic, time reversible models

Since the time steps δt are discrete, ...

There are only N energy levels.

Therefore,

There is a lowest energy state ("vacuum state"), and there is

There are only N energy levels.

Therefore,

There is a lowest energy state ("vacuum state"), and there is a *highest energy state* ("anti-vacuum")

There are only N energy levels.

Therefore,

There is a lowest energy state ("vacuum state"), and there is a highest energy state ("anti-vacuum") possibly important in black hole physics, where the time coordinate flips across the horizon.

YES !! By assuming a

YES !! By assuming a

fast fluctuating background.

Let me explain the new element to be introduced here: energy.

YES !! By assuming a

fast fluctuating background.

Let me explain the new element to be introduced here: energy.

As in 'real' QM, one can diagonalise the evolution operator (Hamiltonian) to get the *energy eigenstates*.

But energy wasn't a 'beable', it is a 'changeable'. (see slide 21). Does this mean that energy is invisible in a deterministic theory?

YES !! By assuming a

fast fluctuating background.

Let me explain the new element to be introduced here: energy.

As in 'real' QM, one can diagonalise the evolution operator (Hamiltonian) to get the *energy eigenstates*.

But energy wasn't a 'beable', it is a 'changeable'. (see slide 21). Does this mean that energy is invisible in a deterministic theory?

No !

In a theory with *fast fluctuating variables* (the white noise background), these variables, when followed variable by variable, would represent gigantic amounts of energy. But if we assume them to be 'white noise' then we can regard them, all taken together, to be in a zero energy (or very-low-energy) state. This energy cannot be *exactly* observed, but approximately. Thermodynamics will generate equipartition, that is, all states with very low energy per variable, will be strongly preferred.

But then, all other states of the system will become inaccurately defined. We don't know what state the white noise is in, so we don't know which state all other variables are in. We enter into the situation that is only too familiar in QM \ldots

In a theory with *fast fluctuating variables* (the white noise background), these variables, when followed variable by variable, would represent gigantic amounts of energy. But if we assume them to be 'white noise' then we can regard them, all taken together, to be in a zero energy (or very-low-energy) state. This energy cannot be *exactly* observed, but approximately. Thermodynamics will generate equipartition, that is, all states with very low energy per variable, will be strongly preferred.

But then, all other states of the system will become inaccurately defined. We don't know what state the white noise is in, so we don't know which state all other variables are in. We enter into the situation that is only too familiar in QM \ldots

This *is* QM

In a theory with *fast fluctuating variables* (the white noise background), these variables, when followed variable by variable, would represent gigantic amounts of energy. But if we assume them to be 'white noise' then we can regard them, all taken together, to be in a zero energy (or very-low-energy) state. This energy cannot be *exactly* observed, but approximately. Thermodynamics will generate equipartition, that is, all states with very low energy per variable, will be strongly preferred.

But then, all other states of the system will become inaccurately defined. We don't know what state the white noise is in, so we don't know which state all other variables are in. We enter into the situation that is only too familiar in QM \ldots

This *is* QM

Consider things this way:

The Hamiltonian acts exactly according to the rules of QM. Therefore, there is nothing wrong with *projecting out the lowest N energy states*. Since the Hamiltonian commutes with itself, this does not affect the equations but only our abilities in observing the states, as if we perform time smearing. The states included in our theory represent the heaviest particles observed in LHC but nothing more!

 The situation that we need to describe occurs when there is a slight inaccuracy in the definition of *time*. Due to energy-time uncertainty,

$\Delta t \cdot \Delta E \approx \hbar \; , \qquad$

we find that a slight smearing of time implies that we (have to) ignore the highest energy states.

We do this all the time in our experiments with high energy elementary particles :

We can only observe the low energy particles. To unravel the high energy, or very massive elementary particles, we need accelerators with energies that we cannot reach.

We cannot follow the fast variables!

Thus, curiously, in the classical limit – read: large scale limit – energy *does* become an observable. But it does not commute with our original beables.

This creates a new – and interesting – situation, which can indeed occur in ordinary classical theories.

I describe what happens in more detail in:

See arxiv:2010.02019 .

There, I construct a completely classical model, which behaves *exactly* as a quantum system.

Here, I present an outline.

Consider a quantum system with a finite dimensional 'Hilbert' space of states. The Hamiltonian is an arbitrary, $N \times N$ hermitean matrix. We construct a model that will generate this matrix as an 'effective' or 'emergent' quantum Hamiltonian.

We assume N classical, fast variables, one for every state of the system.

This sounds like a lot, but we are thinking of the vacuum fluctuations of a high-mass elementary particle. It has independent field degrees of freedom in every small volume element of space. This suffices, and we can economise later (multiple use of a given fast variable)

Each fast variable *i* lives on a circle with period L_i .

Take L_i discrete, like in our elementary unit model (\rightarrow *N*-dimensional torus).

Take the different L_i to be relative primes.

All periods L_i are much shorter than the inverse mass of the slow objects (particles).

e.o.m.: $x_i(t+1) = x_i(t) + 1 \mod L_i$.

This is driven by the Hamiltonian:

 $H = \sum_{i} p_i , \quad p_i = \frac{\partial}{\partial x_i} = \frac{2\pi n_i}{L_i} , \qquad n_i = 0, 1, \cdots, L_i - 1 .$

Assume an *even distribution* of these variables. This means that, in our *formal* quantum language, they are all in their ground states. To make the distribution not even, we need the excited states, but their energies, are at least $2\pi/L_i$, which we take to be much larger than the energies of our quantum states.

The quantum degrees of freedom that I want to describe next, consist of N classical states.

We start with having no evolution at all there, so, for the classical states,

 $H_{\rm class} = 0.$

Now consider two states, *i* and *j*. Assume that I want to add δH_{ij} to my Hamiltonian. There are three possible forms:

 $\begin{aligned} H &= \alpha_1 \sigma_1 + \alpha_2 \sigma_2 + \alpha_3 \sigma_3, \\ \text{with} \quad \sigma_1 &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \end{aligned}$

If we impose $\alpha_1 = \frac{1}{2}\pi$, $\alpha_2 = \alpha_3 = 0$, then this can easily be seen to be a classical evolution: